On nonlocal Monge-Ampère equations

Pablo Raúl Stinga

Iowa State University

Fractional PDEs: Theory, Algorithms and Applications ICERM June 21st, 2018

Pablo Raúl Stinga (Iowa State University)

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Monge-Ampère equation

We want to *transport* μ onto ν (probability measures) in an *optimal way* given that the *cost* of moving x onto y = S(x) is

$$|x - y|^2 = |x - S(x)|^2$$

We want to *transport* μ onto ν (probability measures) in an *optimal way* given that the *cost* of moving x onto y = S(x) is

$$|x - y|^2 = |x - S(x)|^2$$

Mathematical formulation. Minimize the functional

$$\mathcal{F}(S) = \int_{\mathbb{R}^n} |x - S(x)|^2 \, d\mu(x)$$

among all maps S that transport μ onto ν : for any Borel function $\psi : \mathbb{R}^n \to \mathbb{R}$

$$\int_{\mathbb{R}^n} \psi(y) \, d\nu(y) = \int_{\mathbb{R}^n} \psi(S(x)) \, d\mu(x)$$

We want to *transport* μ onto ν (probability measures) in an *optimal way* given that the *cost* of moving x onto y = S(x) is

$$|x - y|^2 = |x - S(x)|^2$$

Mathematical formulation. Minimize the functional

$$\mathcal{F}(S) = \int_{\mathbb{R}^n} |x - S(x)|^2 \, d\mu(x)$$

among all maps S that transport μ onto ν : for any Borel function $\psi : \mathbb{R}^n \to \mathbb{R}$

$$\int_{\mathbb{R}^n} \psi(y) \, d\nu(y) = \int_{\mathbb{R}^n} \psi(S(x)) \, d\mu(x)$$

Theorem (Brenier, 1991)

If $\mu(x) = f(x) dx$ and $\nu(y)$ have finite second moments then there exists a μ -a.e. unique optimal transport map T.

We want to *transport* μ onto ν (probability measures) in an *optimal way* given that the *cost* of moving x onto y = S(x) is

$$|x - y|^2 = |x - S(x)|^2$$

Mathematical formulation. Minimize the functional

$$\mathcal{F}(S) = \int_{\mathbb{R}^n} |x - S(x)|^2 \, d\mu(x)$$

among all maps S that transport μ onto ν : for any Borel function $\psi : \mathbb{R}^n \to \mathbb{R}$

$$\int_{\mathbb{R}^n} \psi(y) \, d\nu(y) = \int_{\mathbb{R}^n} \psi(S(x)) \, d\mu(x)$$

Theorem (Brenier, 1991)

If $\mu(x) = f(x) dx$ and $\nu(y)$ have finite second moments then there exists a μ -a.e. unique optimal transport map T.

Moreover, there exists a l.s.c. **convex** function φ , differentiable μ -a.e. such that

$$T = \nabla \varphi$$
 μ -a.e.

Suppose $\mu = f(x) dx$ and $\nu = g(y) dy$

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Suppose
$$\mu = f(x) dx$$
 and $\nu = g(y) dy$

If the optimal transport map T is a diffeomorphism then, by changing variables,

$$\int_{\mathbb{R}^n} \psi(T(x))f(x) \, dx = \int_{\mathbb{R}^n} \psi(y)g(y) \, dy = \int_{\mathbb{R}^n} \psi(T(x))g(T(x))| \det \nabla T(x)| \, dx$$

< □ > < ^[] >

Suppose
$$\mu = f(x) dx$$
 and $\nu = g(y) dy$

If the optimal transport map T is a diffeomorphism then, by changing variables,

$$\int_{\mathbb{R}^n} \psi(T(x))f(x) \, dx = \int_{\mathbb{R}^n} \psi(y)g(y) \, dy = \int_{\mathbb{R}^n} \psi(T(x))g(T(x)) |\det \nabla T(x)| \, dx$$

Since ψ was arbitrary,

$$g(T(x))|\det \nabla T(x)| = f(x)$$

< □ > < ^[] >

Suppose
$$\mu = f(x) dx$$
 and $\nu = g(y) dy$

If the optimal transport map T is a diffeomorphism then, by changing variables,

$$\int_{\mathbb{R}^n} \psi(T(x))f(x) \, dx = \int_{\mathbb{R}^n} \psi(y)g(y) \, dy = \int_{\mathbb{R}^n} \psi(T(x))g(T(x)) |\det \nabla T(x)| \, dx$$

Since ψ was arbitrary,

$$g(T(x))|\det \nabla T(x)| = f(x)$$

Recall from Brenier that $T = \nabla \varphi$ for φ convex, so that $\nabla T = D^2 \varphi > 0$ and

$$\det(D^2arphi) = rac{f}{g\circ
abla arphi}$$

< □ > < ^[] >

Suppose
$$\mu = f(x) dx$$
 and $\nu = g(y) dy$

If the optimal transport map T is a diffeomorphism then, by changing variables,

$$\int_{\mathbb{R}^n} \psi(T(x))f(x) \, dx = \int_{\mathbb{R}^n} \psi(y)g(y) \, dy = \int_{\mathbb{R}^n} \psi(T(x))g(T(x)) |\det \nabla T(x)| \, dx$$

Since ψ was arbitrary,

$$g(T(x))|\det \nabla T(x)| = f(x)$$

Recall from Brenier that $T = \nabla \varphi$ for φ convex, so that $\nabla T = D^2 \varphi > 0$ and

$$\det(D^2\varphi)=\frac{f}{g\circ\nabla\varphi}$$

▶ The fully nonlinear equation

$$\mathsf{det}(D^2 arphi) = {\sf F}$$

is the Monge-Ampère (MA) equation

Pablo Raúl Stinga (Iowa State University)

A B > A B > A

Let φ be a solution to

$$\det(D^2\varphi)=F$$

イロト イヨト イヨト

Let φ be a solution to

$$\det(D^2\varphi)=F$$

Equation for a directional derivative $\partial_e \varphi$ of the solution

trace $\left(\det(D^2\varphi)(D^2\varphi)^{-1}D^2(\partial_e\varphi)\right) = \partial_e F$

Let φ be a solution to

$$\det(D^2\varphi)=F$$

Equation for a directional derivative $\partial_e \varphi$ of the solution

trace $\left(\det(D^2\varphi)(D^2\varphi)^{-1}D^2(\partial_e\varphi)\right) = \partial_e F$

Here $A_{\varphi}(x) = \det(D^2\varphi(x))(D^2\varphi(x))^{-1}$ is the matrix of cofactors of $D^2\varphi$

Let φ be a solution to

$$\det(D^2\varphi)=F$$

Equation for a directional derivative $\partial_e \varphi$ of the solution

$$ext{trace}\left(ext{det}(D^2arphi)(D^2arphi)^{-1}D^2(\partial_earphi)
ight)=\partial_e F$$

Here $A_{\varphi}(x) = \det(D^2\varphi(x))(D^2\varphi(x))^{-1}$ is the matrix of cofactors of $D^2\varphi$ If we call

$$u = \partial_e \varphi \qquad G = \partial_e F$$

then u solves the linearized MA equation

$$L^{\varphi}(u) = \operatorname{trace}(A_{\varphi}(x)D^{2}u) = G$$

Let φ be a solution to

$$\det(D^2\varphi)=F$$

Equation for a directional derivative $\partial_e \varphi$ of the solution

trace
$$\left(\det(D^2\varphi)(D^2\varphi)^{-1}D^2(\partial_e\varphi)\right) = \partial_e F$$

Here $A_{\varphi}(x) = \det(D^2\varphi(x))(D^2\varphi(x))^{-1}$ is the matrix of cofactors of $D^2\varphi$ If we call

$$u = \partial_e \varphi \qquad G = \partial_e F$$

then u solves the linearized MA equation

$$L^{\varphi}(u) = \operatorname{trace}(A_{\varphi}(x)D^{2}u) = G$$

Linearized MA is an elliptic equation as soon as

$$D^2 \varphi(x) > 0$$
 (convex!) and $F > 0$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let φ be a solution to

$$\det(D^2\varphi)=F$$

Equation for a directional derivative $\partial_e \varphi$ of the solution

trace
$$\left(\det(D^2\varphi)(D^2\varphi)^{-1}D^2(\partial_e\varphi)\right) = \partial_e F$$

Here $A_{\varphi}(x) = \det(D^2\varphi(x))(D^2\varphi(x))^{-1}$ is the matrix of cofactors of $D^2\varphi$ If we call

$$u = \partial_e \varphi \qquad G = \partial_e F$$

then u solves the linearized MA equation

$$L^{\varphi}(u) = \operatorname{trace}(A_{\varphi}(x)D^{2}u) = G$$

Linearized MA is an elliptic equation as soon as

$$D^2 \varphi(x) > 0$$
 (convex!) and $F > 0$

► MA equation is **degenerate elliptic**.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

There is an intrinsic quasi-metric space associated with MA

• • • • • • • •

There is an intrinsic quasi-metric space associated with MA

▶ Uniformly elliptic. $L(u) = trace(A(x)D^2u)$ with $A(x) \sim I$

There is an intrinsic quasi-metric space associated with MA

▶ Uniformly elliptic. $L(u) = trace(A(x)D^2u)$ with $A(x) \sim I$

P quadratic polynomial, then $L(P) \approx 1$

There is an intrinsic quasi-metric space associated with MA

▶ Uniformly elliptic. $L(u) = trace(A(x)D^2u)$ with $A(x) \sim I$

P quadratic polynomial, then $L(P) \approx 1$ Sublevel sets of P are all the Euclidean balls.

There is an intrinsic quasi-metric space associated with MA

▶ Uniformly elliptic. $L(u) = trace(A(x)D^2u)$ with $A(x) \sim I$

P quadratic polynomial, then $L(P)\approx 1$ Sublevel sets of P are all the Euclidean balls. Harnack inequality in balls

A B > A B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

There is an intrinsic quasi-metric space associated with MA

▶ Uniformly elliptic. $L(u) = trace(A(x)D^2u)$ with $A(x) \sim I$

P quadratic polynomial, then $L(P)\approx 1$ Sublevel sets of P are all the Euclidean balls. Harnack inequality in balls

▶ Linearized MA. $L^{\varphi}(u) = \operatorname{trace}(A_{\varphi}(x)D^{2}u)$ with $\det(D^{2}\varphi) \approx 1$

There is an intrinsic quasi-metric space associated with MA

▶ Uniformly elliptic. $L(u) = trace(A(x)D^2u)$ with $A(x) \sim I$

P quadratic polynomial, then $L(P)\approx 1$ Sublevel sets of P are all the Euclidean balls. Harnack inequality in balls

▶ Linearized MA. $L^{\varphi}(u) = \operatorname{trace}(A_{\varphi}(x)D^{2}u)$ with $\det(D^{2}\varphi) \approx 1$ ℓ linear function, then $L^{\varphi}(\varphi - \ell) = L^{\varphi}(\varphi) \approx 1$

There is an intrinsic quasi-metric space associated with MA

▶ Uniformly elliptic. $L(u) = trace(A(x)D^2u)$ with $A(x) \sim I$

P quadratic polynomial, then $L(P)\approx 1$ Sublevel sets of P are all the Euclidean balls. Harnack inequality in balls

▶ Linearized MA. $L^{\varphi}(u) = \operatorname{trace}(A_{\varphi}(x)D^{2}u)$ with $\det(D^{2}\varphi) \approx 1$

 ℓ linear function, then $L^{arphi}(arphi-\ell)=L^{arphi}(arphi)pprox 1$

The functions $\varphi-\ell$ play the same role of P as above

There is an intrinsic quasi-metric space associated with MA

▶ Uniformly elliptic. $L(u) = trace(A(x)D^2u)$ with $A(x) \sim I$

P quadratic polynomial, then $L(P)\approx 1$ Sublevel sets of P are all the Euclidean balls. Harnack inequality in balls

Linearized MA. L^φ(u) = trace(A_φ(x)D²u) with det(D²φ) ≈ 1 ℓ linear function, then L^φ(φ − ℓ) = L^φ(φ) ≈ 1 The functions φ − ℓ play the same role of P as above The geometry is given by the sublevel sets of φ − ℓ or sections of φ

There is an intrinsic quasi-metric space associated with MA

► Uniformly elliptic. $L(u) = \operatorname{trace}(A(x)D^2u)$ with $A(x) \sim I$

P quadratic polynomial, then $L(P) \approx 1$ Sublevel sets of P are all the Euclidean balls. Harnack inequality in balls

Linearized MA. L^φ(u) = trace(A_φ(x)D²u) with det(D²φ) ≈ 1 ℓ linear function, then L^φ(φ − ℓ) = L^φ(φ) ≈ 1 The functions φ − ℓ play the same role of P as above The geometry is given by the sublevel sets of φ − ℓ or sections of φ MA quasi-metric.

$$\delta_{\varphi}(x_0, x) = \varphi(x) - \varphi(x_0) - \nabla \varphi(x_0) \cdot (x - x_0)$$

MA sections.

$$S_{\varphi}(x_0, R) = \left\{ x \in \mathbb{R}^n : \delta_{\varphi}(x_0, x) < R \right\}$$

There is an intrinsic quasi-metric space associated with MA

▶ Uniformly elliptic. $L(u) = \text{trace}(A(x)D^2u)$ with $A(x) \sim I$ *P* quadratic polynomial, then $L(P) \approx 1$

Sublevel sets of P are all the Euclidean balls. Harnack inequality in balls

Linearized MA. L^φ(u) = trace(A_φ(x)D²u) with det(D²φ) ≈ 1 ℓ linear function, then L^φ(φ − ℓ) = L^φ(φ) ≈ 1 The functions φ − ℓ play the same role of P as above The geometry is given by the sublevel sets of φ − ℓ or sections of φ MA quasi-metric.

$$\delta_{\varphi}(x_0, x) = \varphi(x) - \varphi(x_0) - \nabla \varphi(x_0) \cdot (x - x_0)$$

MA sections.

$$S_{\varphi}(x_0, R) = \left\{ x \in \mathbb{R}^n : \delta_{\varphi}(x_0, x) < R \right\}$$

• If
$$arphi(x) = |x|^2/2$$
 then $L^{arphi} = \Delta$ and $S_{arphi}(x_0,R) = B(x_0,\sqrt{2R})$

Harnack inequality for linearized MA

Assumption. The measure $\mu = \det(D^2\varphi) > 0$ satisfies μ_{∞} -condition: given $0 < \delta_1 < 1$ there exists $0 < \delta_2 < 1$ such that for all sections S and all $E \subset S$,

 $|E| < \delta_2 |S|$ implies $\mu(E) < \delta_1 \mu(S)$

Harnack inequality for linearized MA

Assumption. The measure $\mu = \det(D^2\varphi) > 0$ satisfies μ_{∞} -condition: given $0 < \delta_1 < 1$ there exists $0 < \delta_2 < 1$ such that for all sections S and all $E \subset S$, $|E| < \delta_2 |S|$ implies $\mu(E) < \delta_1 \mu(S)$

Theorem (Caffarelli–Gutiérrez, Amer. J. Math 1997)

There exist geometric constants C, K > 1 and $0 < \tau < 1$ such that for any section $S_0 = S_{\varphi}(x_0, R_0)$, every solution to

$$\left\{egin{array}{ll} L^{arphi} u = 0 & \mbox{in } S_0 \ u \geq 0 & \mbox{in } S_0 \end{array}
ight.$$

and every section $S_{\varphi}(x, KR) \subset \subset S_0$, we have

$$\sup_{S_{\varphi}(x,\tau R)} u \leq C \inf_{S_{\varphi}(x,\tau R)} u$$

• • • • • • • • • • • • •

Harnack inequality for linearized MA

Assumption. The measure $\mu = \det(D^2\varphi) > 0$ satisfies μ_{∞} -condition: given $0 < \delta_1 < 1$ there exists $0 < \delta_2 < 1$ such that for all sections S and all $E \subset S$, $|E| < \delta_2 |S|$ implies $\mu(E) < \delta_1 \mu(S)$

Theorem (Caffarelli–Gutiérrez, Amer. J. Math 1997)

There exist geometric constants C, K > 1 and $0 < \tau < 1$ such that for any section $S_0 = S_{\varphi}(x_0, R_0)$, every solution to

$$\left\{egin{array}{ll} L^{arphi} u = 0 & \mbox{in } S_0 \ u \geq 0 & \mbox{in } S_0 \end{array}
ight.$$

and every section $S_{\varphi}(x, KR) \subset \subset S_0$, we have

$$\sup_{S_{\varphi}(x,\tau R)} u \leq C \inf_{S_{\varphi}(x,\tau R)} u$$

In particular, there exists 0 $<\alpha<1$ such that if $L^{\varphi}u=$ 0 then

$$|u(x) - u(z)| \le C \delta_{\varphi}(x, z)^{lpha}$$
 for any $z \in S_{\varphi}(x, R)$

Fractional linearized MA equation

 Maldonado-Stinga, Harnack inequality for the fractional nonlocal linearized Monge-Ampère equation, Calc. Var. PDE (2017)

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

For $\varphi \in C^3$ with $D^2 \varphi > 0$ and a section S of φ we consider $\begin{cases}
L^{\varphi} u = -\operatorname{trace}(A_{\varphi}(x)D^2 u) & \text{in } S \\
u = 0 & \text{on } \partial S
\end{cases}$

Dirichlet linearized MA operator. The operator is nonvariational.

A B > A B >

For $\varphi \in C^3$ with $D^2 \varphi > 0$ and a section S of φ we consider $\begin{cases}
L^{\varphi} u = -\operatorname{trace}(A_{\varphi}(x)D^2 u) & \text{in } S \\
u = 0 & \text{on } \partial S
\end{cases}$

Dirichlet linearized MA operator. The operator is nonvariational. We want to define $(L^{\varphi})^s$ for 0 < s < 1.

For $\varphi \in C^3$ with $D^2 \varphi > 0$ and a section S of φ we consider $\begin{cases}
L^{\varphi} u = -\operatorname{trace}(A_{\varphi}(x)D^2 u) & \text{in } S \\
u = 0 & \text{on } \partial S
\end{cases}$

Dirichlet linearized MA operator. The operator is nonvariational. We want to define $(L^{\varphi})^s$ for 0 < s < 1.

We define fractional powers L^s with the method of semigroups

A B > A B >

For $\varphi \in C^3$ with $D^2 \varphi > 0$ and a section S of φ we consider $\begin{cases}
L^{\varphi} u = -\operatorname{trace}(A_{\varphi}(x)D^2 u) & \text{in } S \\
u = 0 & \text{on } \partial S
\end{cases}$

Dirichlet linearized MA operator. The operator is nonvariational. We want to define $(L^{\varphi})^s$ for 0 < s < 1.

We define fractional powers L^s with the method of semigroups

Let $v(x, t) = e^{-tL}u(x)$ be the **heat semigroup** generated by *L*:

$$\begin{cases} \partial_t v = -Lv & \text{for } t > 0\\ v(x,0) = u(x) \end{cases}$$

For $\varphi \in C^3$ with $D^2 \varphi > 0$ and a section S of φ we consider $\begin{cases}
L^{\varphi} u = -\operatorname{trace}(A_{\varphi}(x)D^2 u) & \text{in } S \\
u = 0 & \text{on } \partial S
\end{cases}$

Dirichlet linearized MA operator. The operator is nonvariational. We want to define $(L^{\varphi})^s$ for 0 < s < 1.

We define fractional powers L^s with the method of semigroups

Let $v(x, t) = e^{-tL}u(x)$ be the **heat semigroup** generated by *L*:

$$\begin{cases} \partial_t v = -Lv & \text{for } t > 0\\ v(x,0) = u(x) \end{cases}$$

For 0 < s < 1,

$$L^{s}u(x) = \frac{1}{\Gamma(-s)} \int_0^\infty \left(e^{-tL} u(x) - u(x) \right) \frac{dt}{t^{1+s}}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Fractional operators

$$L^{s}u(x) = \frac{1}{\Gamma(-s)} \int_{0}^{\infty} \left(e^{-tL}u(x) - u(x)\right) \frac{dt}{t^{1+s}}$$

This identity comes from a numerical formula with the Gamma function

For
$$\lambda \ge 0$$
, $\lambda^s = rac{1}{\Gamma(-s)} \int_0^\infty (e^{-t\lambda} - 1) \, rac{dt}{t^{1+s}}$

< □ > < ^[] >

Fractional operators

$$L^{s}u(x) = \frac{1}{\Gamma(-s)} \int_{0}^{\infty} \left(e^{-tL}u(x) - u(x)\right) \frac{dt}{t^{1+s}}$$

This identity comes from a numerical formula with the Gamma function

For
$$\lambda \ge 0$$
, $\lambda^s = rac{1}{\Gamma(-s)} \int_0^\infty (e^{-t\lambda} - 1) \, rac{dt}{t^{1+s}}$

For example,

$$(-\Delta)^{s}u(x) = \frac{1}{\Gamma(-s)} \int_{0}^{\infty} \left(e^{t\Delta}u(x) - u(x)\right) \frac{dt}{t^{1+s}}$$
$$= c_{n,s} \operatorname{P.V.} \int_{\mathbb{R}^{n}} \frac{u(x) - u(z)}{|x - z|^{n+2s}} dz$$

Stinga-Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. PDE (2010) (Hilbert spaces – variational)

For nonvariational operators we use the semigroup method from

 Galé–Miana–Stinga, Extension problem and fractional operators: semigroups and wave equations, J. Evol. Equ. (2013) (Banach spaces – nonvariational)

For nonvariational operators we use the semigroup method from

 Galé–Miana–Stinga, Extension problem and fractional operators: semigroups and wave equations, J. Evol. Equ. (2013) (Banach spaces – nonvariational)

For 0 < s < 1 we define the **fractional linearlized MA operator** as

$$(L^{\varphi})^{s}u(x) = \frac{1}{\Gamma(-s)}\int_{0}^{\infty} \left(e^{-tL^{\varphi}}u(x) - u(x)\right)\frac{dt}{t^{1+s}}$$

where $v(x, t) = e^{-tL^{\varphi}}u(x)$ is the solution to

$$\begin{cases} \partial_t v = -L^{\varphi} v & \text{in } S \times (0, \infty) \\ v = 0 & \text{on } \partial S \times [0, \infty) \\ v(x, 0) = u(x) & \text{on } S \end{cases}$$

For nonvariational operators we use the semigroup method from

 Galé–Miana–Stinga, Extension problem and fractional operators: semigroups and wave equations, J. Evol. Equ. (2013) (Banach spaces – nonvariational)

For 0 < s < 1 we define the **fractional linearlized MA operator** as

$$(L^{\varphi})^{s}u(x) = \frac{1}{\Gamma(-s)}\int_{0}^{\infty} \left(e^{-tL^{\varphi}}u(x) - u(x)\right)\frac{dt}{t^{1+s}}$$

where $v(x, t) = e^{-tL^{\varphi}}u(x)$ is the solution to

$$\begin{cases} \partial_t v = -L^{\varphi} v & \text{in } S \times (0, \infty) \\ v = 0 & \text{on } \partial S \times [0, \infty) \\ v(x, 0) = u(x) & \text{on } S \end{cases}$$

• The semigroup $e^{-tL^{\varphi}}$ has a heat kernel.

For nonvariational operators we use the semigroup method from

 Galé–Miana–Stinga, Extension problem and fractional operators: semigroups and wave equations, J. Evol. Equ. (2013) (Banach spaces – nonvariational)

For 0 < s < 1 we define the fractional linearlized MA operator as

$$(L^{\varphi})^{s}u(x) = \frac{1}{\Gamma(-s)}\int_{0}^{\infty} \left(e^{-tL^{\varphi}}u(x) - u(x)\right)\frac{dt}{t^{1+s}}$$

where $v(x, t) = e^{-tL^{\varphi}}u(x)$ is the solution to

$$\begin{cases} \partial_t v = -L^{\varphi} v & \text{in } S \times (0, \infty) \\ v = 0 & \text{on } \partial S \times [0, \infty) \\ v(x, 0) = u(x) & \text{on } S \end{cases}$$

• The semigroup $e^{-tL^{\varphi}}$ has a heat kernel.

One can see that

$$(L^{\varphi})^{s}u(x) = \mathsf{P}.\mathsf{V}.\int_{S}(u(x) - u(z))\mathcal{K}^{\varphi}_{s}(x,z)\,dz + B^{\varphi}_{s}(x)u(x)$$

Harnack inequality

Assumption. The measure $\mu = \det(D^2\varphi) > 0$ satisfies the doubling condition: there exists $C_d \ge 1$ such that for any section S of φ we have

 $\mu(S) \leq C_d \mu(\frac{1}{2}S)$

Harnack inequality

Assumption. The measure $\mu = \det(D^2\varphi) > 0$ satisfies the doubling condition: there exists $C_d \ge 1$ such that for any section S of φ we have

 $\mu(S) \leq C_d \mu(\frac{1}{2}S)$

Theorem (Maldonado-Stinga, 2017)

There exist geometric constants C, K > 1 and $0 < \tau < 1$ such that for any section S_0 of φ , every $f \in C_0(\overline{S_0})$, every solution u to

$$\begin{cases} (L^{\varphi})^{s} u = f & \text{in } S_{0} \\ u \ge 0 & \text{in } S_{0} \end{cases}$$

and every section $S_{\varphi}(x, KR) \subset \subset S_0$,

$$\sup_{S_{\varphi}(x,\tau R)} u \le C\Big(\inf_{S_{\varphi}(x,\tau R)} u + R^{s} \|f\|_{L^{\infty}(S_{\varphi}(x,KR))}\Big)$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Harnack inequality

Assumption. The measure $\mu = \det(D^2\varphi) > 0$ satisfies the doubling condition: there exists $C_d \ge 1$ such that for any section S of φ we have

 $\mu(S) \leq C_d \mu(\frac{1}{2}S)$

Theorem (Maldonado–Stinga, 2017)

There exist geometric constants C, K > 1 and $0 < \tau < 1$ such that for any section S_0 of φ , every $f \in C_0(\overline{S_0})$, every solution u to

$$\begin{cases} (L^{\varphi})^{s} u = f & \text{in } S_{0} \\ u \ge 0 & \text{in } S_{0} \end{cases}$$

and every section $S_{\varphi}(x, KR) \subset \subset S_0$,

$$\sup_{S_{\varphi}(x,\tau R)} u \leq C\Big(\inf_{S_{\varphi}(x,\tau R)} u + R^{s} \|f\|_{L^{\infty}(S_{\varphi}(x,KR))}\Big)$$

As a consequence, there exists 0 < lpha < 1 such that if $(L^{arphi})^s u = f$ then

$$|u(x)-u(z)| \leq C \delta_{\varphi}(x,z)^{\alpha} \quad \text{for any } z \in S_{\varphi}(x,R) \text{ for any } z \in S_{\varphi}(x$$

Pablo Raúl Stinga (Iowa State University)

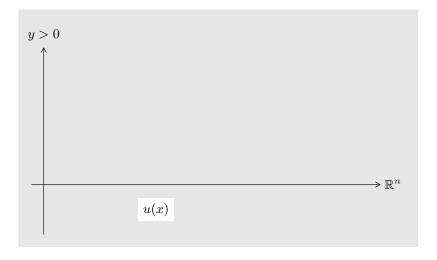
Caffarelli-Silvestre extension problem (2007)

Aim. Describe $(-\Delta)^s$ (nonlocal in \mathbb{R}^n) with local PDEs

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Caffarelli-Silvestre extension problem (2007)

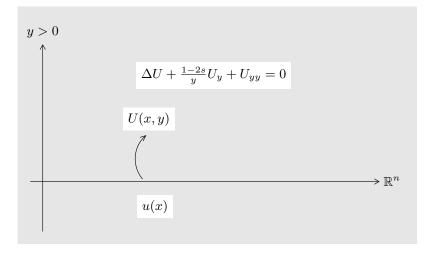
Aim. Describe $(-\Delta)^s$ (nonlocal in \mathbb{R}^n) with local PDEs



・ロト ・聞 ト ・ 臣 ト ・ 臣 ト

Caffarelli-Silvestre extension problem (2007)

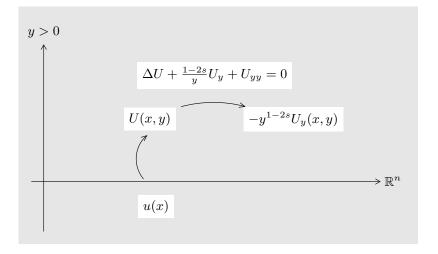
Aim. Describe $(-\Delta)^s$ (nonlocal in \mathbb{R}^n) with local PDEs



(日) (四) (王) (王) (王)

Caffarelli–Silvestre extension problem (2007)

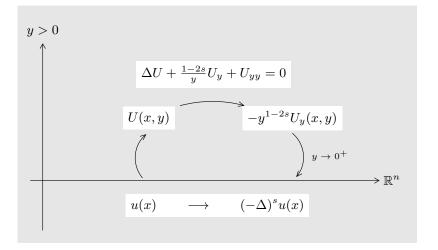
Aim. Describe $(-\Delta)^s$ (nonlocal in \mathbb{R}^n) with local PDEs



イロト イポト イヨト イヨト

Caffarelli–Silvestre extension problem (2007)

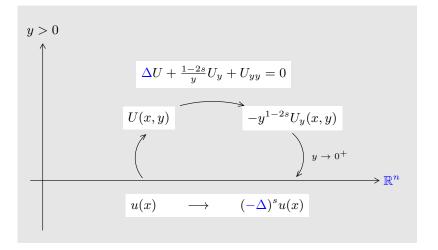
Aim. Describe $(-\Delta)^s$ (nonlocal in \mathbb{R}^n) with local PDEs



イロト イポト イヨト イヨト

Caffarelli–Silvestre extension problem (2007)

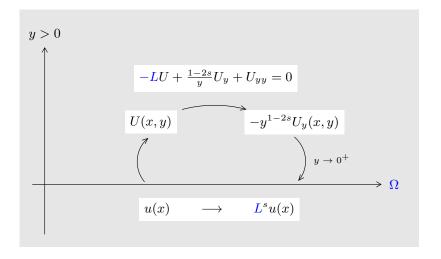
Aim. Describe $(-\Delta)^s$ (nonlocal in \mathbb{R}^n) with local PDEs



イロト イポト イヨト イヨト

Stinga–Torrea (2010) and Galé–Miana–Stinga (2013)

Aim. Describe L^{s} (nonlocal in Ω) with local PDEs



イロト イポト イヨト イヨ

Extension for fractional linearized MA

The extension problem for $(L^{\varphi})^{s}$ in nondivergence form reads

$$\begin{cases} \operatorname{trace}(A_{\varphi}(x)D^{2}U) + z^{2-1/s}U_{zz} = 0 & \text{for } x \in S, z > 0 \\ U = 0 & \text{for } x \in \partial S, z \ge 0 \\ -U_{z}\big|_{z=0^{+}} = f(x) & \text{for } x \in S \end{cases}$$

Then

$$(L^{\varphi})^{s}u = f$$
 if and only if $U(x,0) = u(x)$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Extension for fractional linearized MA

The extension problem for $(L^{\varphi})^s$ in nondivergence form reads

$$\begin{cases} \operatorname{trace}(A_{\varphi}(x)D^{2}U) + z^{2-1/s}U_{zz} = 0 & \text{for } x \in S, z > 0 \\ U = 0 & \text{for } x \in \partial S, z \ge 0 \\ -U_{z}\big|_{z=0^{+}} = f(x) & \text{for } x \in S \end{cases}$$

Then

$$(L^{\varphi})^{s}u = f$$
 if and only if $U(x,0) = u(x)$

The extension equation is a linearized MA equation: for $\tilde{U}(x,z) = U(x,|z|)$,

$$ext{trace}(A_arphi(x)D^2 ilde{U})+|z|^{2-1/s} ilde{U}_{zz}= ext{trace}(A_\Phi(x,z)D^2_{x,z} ilde{U})=0$$

for $z \neq 0$, where $\Phi(x,z) = \varphi(x) + rac{s^2}{(1-s)}|z|^{1/s}$

In addition, $\mu_{\Phi} = \det(D^2 \Phi)$ satisfies the **doubling condition**

Extension for fractional linearized MA

The extension problem for $(L^{\varphi})^s$ in nondivergence form reads

$$\begin{cases} \operatorname{trace}(A_{\varphi}(x)D^{2}U) + z^{2-1/s}U_{zz} = 0 & \text{for } x \in S, z > 0 \\ U = 0 & \text{for } x \in \partial S, z \ge 0 \\ -U_{z}\big|_{z=0^{+}} = f(x) & \text{for } x \in S \end{cases}$$

Then

$$(L^{\varphi})^{s}u = f$$
 if and only if $U(x,0) = u(x)$

The extension equation is a linearized MA equation: for $\tilde{U}(x,z) = U(x,|z|)$,

$${
m trace}(A_arphi(x)D^2 ilde U)+|z|^{2-1/s} ilde U_{zz}={
m trace}(A_\Phi(x,z)D^2_{x,z} ilde U)=0$$

for $z \neq 0$, where $\Phi(x, z) = \varphi(x) + \frac{s^2}{(1-s)}|z|^{1/s}$ In addition, $\mu_{\Phi} = \det(D^2\Phi)$ satisfies the **doubling condition BUT** still there is a degeneracy/singularity of $D^2\Phi$ at z = 0!

Image: Image:

The columns of $A_{\varphi}(x) = \det(D^2\varphi(x))(D^2\varphi(x))^{-1}$ are divergence free.

The columns of $A_{\varphi}(x) = \det(D^2\varphi(x))(D^2\varphi(x))^{-1}$ are divergence free. Then linearized MA also has **divergence structure**:

$$-\operatorname{trace}(A_{\varphi}(x)D^{2}u) = -\operatorname{div}(A_{\varphi}(x)\nabla u) \equiv \mathcal{L}^{\varphi}u$$

A B > A B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The columns of $A_{\varphi}(x) = \det(D^2\varphi(x))(D^2\varphi(x))^{-1}$ are divergence free. Then linearized MA also has **divergence structure**:

$$-\operatorname{trace}(A_{\varphi}(x)D^{2}u) = -\operatorname{div}(A_{\varphi}(x)\nabla u) \equiv \mathcal{L}^{\varphi}u$$

With a change of variables $z \leftrightarrow y$ the extension equation becomes variational

$$\operatorname{trace}(A_{\varphi}(x)D^{2}U)+z^{2-1/s}U_{zz}=0\quad\longleftrightarrow\quad\operatorname{div}(y^{1-2s}A_{\varphi}(x)\nabla_{x,y}V)=0$$

The columns of $A_{\varphi}(x) = \det(D^2\varphi(x))(D^2\varphi(x))^{-1}$ are divergence free. Then linearized MA also has **divergence structure**:

$$-\operatorname{trace}(A_{\varphi}(x)D^{2}u) = -\operatorname{div}(A_{\varphi}(x)\nabla u) \equiv \mathcal{L}^{\varphi}u$$

With a change of variables $z \leftrightarrow y$ the extension equation becomes variational

$$\mathsf{trace}(A_\varphi(x)D^2U)+z^{2-1/s}U_{zz}=0\quad\longleftrightarrow\quad\mathsf{div}(y^{1-2s}A_\varphi(x)\nabla_{x,y}V)=0$$

The variational side will give us weak Harnack inequality $(|\{z = 0\}| = 0)$

A B > A B >

The columns of $A_{\varphi}(x) = \det(D^2\varphi(x))(D^2\varphi(x))^{-1}$ are divergence free. Then linearized MA also has **divergence structure**:

$$-\operatorname{trace}(A_{\varphi}(x)D^{2}u) = -\operatorname{div}(A_{\varphi}(x)\nabla u) \equiv \mathcal{L}^{\varphi}u$$

With a change of variables $z \leftrightarrow y$ the extension equation becomes variational

$$\mathsf{trace}(\mathsf{A}_{\varphi}(x)\mathsf{D}^{2}\mathsf{U})+z^{2-1/s}\mathsf{U}_{zz}=0\quad\longleftrightarrow\quad\mathsf{div}(y^{1-2s}\mathsf{A}_{\varphi}(x)\nabla_{x,y}\mathsf{V})=0$$

The variational side will give us weak Harnack inequality $(|\{z = 0\}| = 0)$

 \mathcal{L}^{φ} has a sequence of eigenvalues/eigenfunctions (λ_k, ψ_k) , so we can define

$$(\mathcal{L}^{\varphi})^{s}u = \sum \lambda_{k}^{s}u_{k}\psi_{k}$$

The columns of $A_{\varphi}(x) = \det(D^2\varphi(x))(D^2\varphi(x))^{-1}$ are divergence free. Then linearized MA also has **divergence structure**:

$$-\operatorname{trace}(A_{\varphi}(x)D^{2}u) = -\operatorname{div}(A_{\varphi}(x)\nabla u) \equiv \mathcal{L}^{\varphi}u$$

With a change of variables $z \leftrightarrow y$ the extension equation becomes variational

$$\mathsf{trace}(A_\varphi(x)D^2U)+z^{2-1/s}U_{zz}=0\quad\longleftrightarrow\quad\mathsf{div}(y^{1-2s}A_\varphi(x)\nabla_{x,y}V)=0$$

The variational side will give us weak Harnack inequality $(|\{z = 0\}| = 0)$

 \mathcal{L}^{φ} has a sequence of eigenvalues/eigenfunctions (λ_k, ψ_k) , so we can define

$$(\mathcal{L}^{\varphi})^{s} u = \sum \lambda_{k}^{s} u_{k} \psi_{k}$$

Theorem (Maldonado–Stinga, 2017)

$$(L^{\varphi})^s = (\mathcal{L}^{\varphi})^s$$

Pablo Raúl Stinga (Iowa State University)

Obstacle problem for a fractional MA equation

 Jhaveri–Stinga, The obstacle problem for a fractional Monge–Ampère equation, arXiv (2017)

Image: A matrix

For u convex and C^2 we have

$$n \det(D^2 u(x))^{1/n} = \inf \left\{ \Delta(u \circ A)(A^{-1}x) : A = A^T > 0, \det(A) = 1 \right\}$$
$$= \inf \left\{ \operatorname{trace}(A^2 D^2 u(x)) : A = A^T > 0, \det(A) = 1 \right\}$$

3

メロト メポト メヨト メ

For u convex and C^2 we have

$$n \det(D^2 u(x))^{1/n} = \inf \left\{ \Delta(u \circ A)(A^{-1}x) : A = A^T > 0, \det(A) = 1 \right\}$$
$$= \inf \left\{ \operatorname{trace}(A^2 D^2 u(x)) : A = A^T > 0, \det(A) = 1 \right\}$$

Infimum is achieved by $A^2 = \det(D^2 u)^{1/n} (D^2 u)^{-1}$

For u convex and C^2 we have

$$n \det(D^2 u(x))^{1/n} = \inf \left\{ \Delta(u \circ A)(A^{-1}x) : A = A^T > 0, \det(A) = 1 \right\}$$
$$= \inf \left\{ \operatorname{trace}(A^2 D^2 u(x)) : A = A^T > 0, \det(A) = 1 \right\}$$

Infimum is achieved by $A^2 = \det(D^2 u)^{1/n} (D^2 u)^{-1}$

MA is degenerate elliptic. Matrices of the form

$$egin{array}{cc} A = egin{pmatrix} arepsilon & 0 \ 0 & 1/arepsilon \end{pmatrix}$$

enter in the computation of the infimum.

For u convex and C^2 we have

$$n \det(D^2 u(x))^{1/n} = \inf \left\{ \Delta(u \circ A)(A^{-1}x) : A = A^T > 0, \det(A) = 1 \right\}$$
$$= \inf \left\{ \operatorname{trace}(A^2 D^2 u(x)) : A = A^T > 0, \det(A) = 1 \right\}$$

Infimum is achieved by $A^2 = \det(D^2 u)^{1/n} (D^2 u)^{-1}$

MA is degenerate elliptic. Matrices of the form

$$egin{array}{cc} A = egin{pmatrix} arepsilon & 0 \ 0 & 1/arepsilon \end{pmatrix}$$

enter in the computation of the infimum.

Nevertheless, if u is convex, $D_{ee}^2 u \leq M_0$ (semiconcave) and

$$\det(D^2 u) = \prod_{j=1}^n \lambda_j = f(x) \ge \eta_0 > 0$$

then $D^2 u \sim I$. Thus $A > \lambda I$ in the computation of the infimum.

O > <
 O >

For 1/2 < s < 1 and u linear at infinity,

 $\mathcal{D}_{s}u(x) = \inf \left\{ -(-\Delta)^{s}(u \circ A)(A^{-1}x) : A = A^{T} > 0, \det(A) = 1 \right\}$

For 1/2 < s < 1 and u linear at infinity,

$$\mathcal{D}_{s}u(x) = \inf \left\{ -(-\Delta)^{s}(u \circ A)(A^{-1}x) : A = A^{T} > 0, \det(A) = 1 \right\}$$

Integro-differential formula:

$$\mathcal{D}_{s}u(x) = \inf_{A > 0, \det(A) = 1} \frac{c_{n,s}}{2} \int_{\mathbb{R}^{n}} \frac{u(x+z) + u(x-z) - 2u(x)}{|A^{-1}z|^{n+2s}} dz$$

A B > A B >

For 1/2 < s < 1 and u linear at infinity,

 $\mathcal{D}_{s}u(x) = \inf\left\{-(-\Delta)^{s}(u \circ A)(A^{-1}x) : A = A^{T} > 0, \det(A) = 1\right\}$

Integro-differential formula:

$$\mathcal{D}_{s}u(x) = \inf_{A>0, \det(A)=1} \frac{c_{n,s}}{2} \int_{\mathbb{R}^{n}} \frac{u(x+z) + u(x-z) - 2u(x)}{|A^{-1}z|^{n+2s}} dz$$

The fractional MA operator is degenerate elliptic.

A B > A B >

For 1/2 < s < 1 and u linear at infinity,

 $\mathcal{D}_{s}u(x) = \inf \left\{ -(-\Delta)^{s}(u \circ A)(A^{-1}x) : A = A^{T} > 0, \det(A) = 1 \right\}$

Integro-differential formula:

$$\mathcal{D}_{s}u(x) = \inf_{A>0, \det(A)=1} \frac{c_{n,s}}{2} \int_{\mathbb{R}^{n}} \frac{u(x+z) + u(x-z) - 2u(x)}{|A^{-1}z|^{n+2s}} dz$$

The fractional MA operator is degenerate elliptic.

Theorem (Caffarelli–Charro, Ann. of PDE 2015) $\lim_{s \to 1^{-}} \mathcal{D}_s u(x) = n \det(D^2 u(x))^{1/n}$

(日) (同) (三) (三)

Fractional MA equation

Caffarelli and Charro considered the Dirichlet problem

$$\begin{cases} \mathcal{D}_s \bar{u} = \bar{u} - \phi & \text{in } \mathbb{R}^n \\ \lim_{|x| \to \infty} (\bar{u} - \phi)(x) = 0 \end{cases}$$

where ϕ is convex and behaves like a cone at infinity.

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Caffarelli and Charro considered the Dirichlet problem

$$\begin{cases} \mathcal{D}_s \bar{u} = \bar{u} - \phi & \text{in } \mathbb{R}^n \\ \lim_{|x| \to \infty} (\bar{u} - \phi)(x) = 0 \end{cases}$$

where ϕ is convex and behaves like a cone at infinity.

In particular, $\mathcal{D}_{s}\phi \geq 0 = \phi - \phi$, so ϕ is a subsolution and $\bar{u} \geq \phi$.

Caffarelli and Charro considered the Dirichlet problem

$$\begin{cases} \mathcal{D}_s \bar{u} = \bar{u} - \phi & \text{in } \mathbb{R}^n \\ \lim_{|x| \to \infty} (\bar{u} - \phi)(x) = 0 \end{cases}$$

where ϕ is convex and behaves like a cone at infinity.

In particular, $\mathcal{D}_{s}\phi \geq 0 = \phi - \phi$, so ϕ is a subsolution and $\bar{u} \geq \phi$.

There exists a unique viscosity solution \bar{u} that is **Lipschitz** and **semiconcave**.

Caffarelli and Charro considered the Dirichlet problem

$$\begin{cases} \mathcal{D}_s \bar{u} = \bar{u} - \phi & \text{in } \mathbb{R}^n \\ \lim_{|x| \to \infty} (\bar{u} - \phi)(x) = 0 \end{cases}$$

where ϕ is convex and behaves like a cone at infinity.

In particular, $\mathcal{D}_{s}\phi \geq 0 = \phi - \phi$, so ϕ is a subsolution and $\bar{u} \geq \phi$.

There exists a unique viscosity solution \bar{u} that is **Lipschitz** and **semiconcave**. Moreover, \bar{u} has the crucial property

$$\bar{u} > \phi$$
 in \mathbb{R}^n

Image: A matrix and a matrix

Caffarelli and Charro considered the Dirichlet problem

۲

$$\begin{cases} \mathcal{D}_s \bar{u} = \bar{u} - \phi & \text{in } \mathbb{R}^n \\ \lim_{|x| \to \infty} (\bar{u} - \phi)(x) = 0 \end{cases}$$

where ϕ is convex and behaves like a cone at infinity.

In particular, $\mathcal{D}_{s}\phi \geq 0 = \phi - \phi$, so ϕ is a subsolution and $\bar{u} \geq \phi$.

There exists a unique viscosity solution \bar{u} that is **Lipschitz** and **semiconcave**. Moreover, \bar{u} has the crucial property

 $\bar{u} > \phi$ in \mathbb{R}^n

Theorem (Caffarelli-Charro, Ann. of PDE 2015)

Let u be Lipschitz, semiconcave and such that $\mathcal{D}_s u \geq \eta_0 > 0$ in a ball B.

Caffarelli and Charro considered the Dirichlet problem

۲

$$\begin{cases} \mathcal{D}_s \bar{u} = \bar{u} - \phi & \text{in } \mathbb{R}^n \\ \lim_{|x| \to \infty} (\bar{u} - \phi)(x) = 0 \end{cases}$$

where ϕ is convex and behaves like a cone at infinity.

In particular, $\mathcal{D}_{s}\phi \geq 0 = \phi - \phi$, so ϕ is a subsolution and $\bar{u} \geq \phi$.

There exists a unique viscosity solution \bar{u} that is **Lipschitz** and **semiconcave**. Moreover, \bar{u} has the crucial property

$$\bar{u} > \phi$$
 in \mathbb{R}^n

Theorem (Caffarelli–Charro, Ann. of PDE 2015)

Let u be Lipschitz, semiconcave and such that $\mathcal{D}_s u \ge \eta_0 > 0$ in a ball B. Then the equation becomes uniformly elliptic: there exists $\lambda > 0$ such that

$$\mathcal{D}_{s}u(x) = \mathcal{D}_{s}^{\lambda}u(x) = \inf_{A > \lambda I, \det(A) = 1} \frac{c_{n,s}}{2} \int_{\mathbb{R}^{n}} \frac{u(x+z) + u(x-z) - 2u(x)}{|A^{-1}z|^{n+2s}} dz$$

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

Caffarelli and Charro considered the Dirichlet problem

$$\begin{cases} \mathcal{D}_s \bar{u} = \bar{u} - \phi & \text{in } \mathbb{R}^n \\ \lim_{|x| \to \infty} (\bar{u} - \phi)(x) = 0 \end{cases}$$

where ϕ is convex and behaves like a cone at infinity.

In particular, $\mathcal{D}_{s}\phi \geq 0 = \phi - \phi$, so ϕ is a subsolution and $\bar{u} \geq \phi$.

There exists a unique viscosity solution \bar{u} that is **Lipschitz** and **semiconcave**. Moreover, \bar{u} has the crucial property

$$\bar{u} > \phi$$
 in \mathbb{R}^n

Theorem (Caffarelli-Charro, Ann. of PDE 2015)

Let u be Lipschitz, semiconcave and such that $D_s u \ge \eta_0 > 0$ in a ball B. Then the equation becomes uniformly elliptic: there exists $\lambda > 0$ such that

$$\mathcal{D}_{s}u(x) = \mathcal{D}_{s}^{\lambda}u(x) = \inf_{A > \lambda I, \det(A) = 1} \frac{c_{n,s}}{2} \int_{\mathbb{R}^{n}} \frac{u(x+z) + u(x-z) - 2u(x)}{|A^{-1}z|^{n+2s}} dz$$

▶ The uniformly elliptic regularity theory of Caffarelli–Silvestre applies.

Obstacle problem for fractional MA equation

We consider the obstacle problem

$$\begin{cases} \mathcal{D}_{s} u \geq u - \phi & \text{ in } \mathbb{R}^{n} \\ u \leq \psi & \text{ in } \mathbb{R}^{n} \\ \mathcal{D}_{s} u = u - \phi & \text{ in } \{u < \psi\} \\ \lim_{|x| \to \infty} (u - \phi)(x) = 0 \end{cases}$$

for an obstacle ψ such that

 $\psi > \phi$ and $\psi \leq \overline{u}$ in some compact set.

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

Obstacle problem for fractional MA equation

We consider the obstacle problem

$$\begin{cases} \mathcal{D}_{s} u \geq u - \phi & \text{ in } \mathbb{R}^{n} \\ u \leq \psi & \text{ in } \mathbb{R}^{n} \\ \mathcal{D}_{s} u = u - \phi & \text{ in } \{u < \psi\} \\ \lim_{|x| \to \infty} (u - \phi)(x) = 0 \end{cases}$$

for an obstacle ψ such that

 $\psi > \phi$ and $\psi \leq \overline{u}$ in some compact set.

Theorem (Jhaveri–Stinga, 2017)

There exists a unique viscosity solution u that is Lipschitz and semiconcave with constants depending only on ϕ and ψ . Moreover

 $u > \phi$ in \mathbb{R}^n

Higher regularity of u and regularity of the free boundary $\partial \{u < \psi\}$.

イロト イポト イヨト イヨト

Obstacle problem for fractional MA equation

We consider the obstacle problem

$$\begin{cases} \mathcal{D}_{s} u \geq u - \phi & \text{ in } \mathbb{R}^{n} \\ u \leq \psi & \text{ in } \mathbb{R}^{n} \\ \mathcal{D}_{s} u = u - \phi & \text{ in } \{u < \psi\} \\ \lim_{|x| \to \infty} (u - \phi)(x) = 0 \end{cases}$$

for an obstacle ψ such that

 $\psi > \phi$ and $\psi \leq \overline{u}$ in some compact set.

Theorem (Jhaveri–Stinga, 2017)

There exists a unique viscosity solution u that is Lipschitz and semiconcave with constants depending only on ϕ and ψ . Moreover

 $u > \phi$ in \mathbb{R}^n

Higher regularity of u and regularity of the free boundary $\partial \{u < \psi\}$.

In particular, locally, the operator becomes uniformly elliptic.

Existence. Very delicate due to degeneracy

<ロト <回ト < 臣

- **Existence.** Very delicate due to degeneracy
- **►** Regularity. Given any ball *B*, there exists $\lambda > 0$ such that

$$\begin{cases} \mathcal{D}_{s}^{\lambda} u \geq u - \phi & \text{ in } \mathbb{R}^{n} \\ u \leq \psi & \text{ in } \mathbb{R}^{n} \\ \mathcal{D}_{s}^{\lambda} u = u - \phi & \text{ in } \{u < \psi\} \cap B \\ \lim_{|x| \to \infty} (u - \phi)(x) = 0 \end{cases}$$

- **Existence.** Very delicate due to degeneracy
- **►** Regularity. Given any ball *B*, there exists $\lambda > 0$ such that

$$\begin{cases} \mathcal{D}_{s}^{\lambda} u \geq u - \phi & \text{ in } \mathbb{R}^{n} \\ u \leq \psi & \text{ in } \mathbb{R}^{n} \\ \mathcal{D}_{s}^{\lambda} u = u - \phi & \text{ in } \{u < \psi\} \cap B \\ \lim_{|x| \to \infty} (u - \phi)(x) = 0 \end{cases}$$

This is a uniformly elliptic obstacle problem as considered in

Caffarelli–Ros-Oton–Serra, Obstacle problems for integro-differential operators: regularity of solutions and free boundaries, *Invent. Math.* (2017).

(日) (同) (日) (日)

- **Existence.** Very delicate due to degeneracy
- **►** Regularity. Given any ball *B*, there exists $\lambda > 0$ such that

$$\begin{cases} \mathcal{D}_{s}^{\lambda} u \geq u - \phi & \text{ in } \mathbb{R}^{n} \\ u \leq \psi & \text{ in } \mathbb{R}^{n} \\ \mathcal{D}_{s}^{\lambda} u = u - \phi & \text{ in } \{u < \psi\} \cap B \\ \lim_{|x| \to \infty} (u - \phi)(x) = 0 \end{cases}$$

This is a uniformly elliptic obstacle problem as considered in

Caffarelli–Ros-Oton–Serra, Obstacle problems for integro-differential operators: regularity of solutions and free boundaries, *Invent. Math.* (2017).

We have **no equation** in the part of $\{u < \psi\}$ that is outside of *B*.

Existence. Very delicate due to degeneracy

► Regularity. Given any ball *B*, there exists $\lambda > 0$ such that

$$\begin{cases} \mathcal{D}_{s}^{\lambda} u \geq u - \phi & \text{ in } \mathbb{R}^{n} \\ u \leq \psi & \text{ in } \mathbb{R}^{n} \\ \mathcal{D}_{s}^{\lambda} u = u - \phi & \text{ in } \{u < \psi\} \cap B \\ \lim_{|x| \to \infty} (u - \phi)(x) = 0 \end{cases}$$

This is a uniformly elliptic obstacle problem as considered in

Caffarelli–Ros-Oton–Serra, Obstacle problems for integro-differential operators: regularity of solutions and free boundaries, *Invent. Math.* (2017).

We have **no equation** in the part of $\{u < \psi\}$ that is outside of *B*.

Careful. Nonlocal information may have local effects: Dipierro–Savin–Valdinoci, All functions are locally *s*-harmonic up to a small error, *JEMS* (2017).

(日) (同) (三) (三)

Existence. Very delicate due to degeneracy

► Regularity. Given any ball *B*, there exists $\lambda > 0$ such that

$$\begin{cases} \mathcal{D}_{s}^{\lambda} u \geq u - \phi & \text{ in } \mathbb{R}^{n} \\ u \leq \psi & \text{ in } \mathbb{R}^{n} \\ \mathcal{D}_{s}^{\lambda} u = u - \phi & \text{ in } \{u < \psi\} \cap B \\ \lim_{|x| \to \infty} (u - \phi)(x) = 0 \end{cases}$$

This is a uniformly elliptic obstacle problem as considered in

Caffarelli–Ros-Oton–Serra, Obstacle problems for integro-differential operators: regularity of solutions and free boundaries, *Invent. Math.* (2017).

We have **no equation** in the part of $\{u < \psi\}$ that is outside of *B*.

Careful. Nonlocal information may have local effects: Dipierro–Savin–Valdinoci, All functions are locally *s*-harmonic up to a small error, *JEMS* (2017).

We are good. The global control $\|\nabla u\|_{L^{\infty}(\mathbb{R}^n)} \leq 1$ permits us to obtain the same blow ups near free boundary points as in Caffarelli–Ros-Oton–Serra.

Thank you for your attention!

< □ > < ^[] >