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Monge optimal transport problem

We want to transport 1 onto v (probability measures) in an optimal way given
that the cost of moving x onto y = S(x) is

x = yI? = Ix = S(x)P?
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Monge optimal transport problem

We want to transport 1 onto v (probability measures) in an optimal way given
that the cost of moving x onto y = S(x) is

x = yI? = Ix = S(x)P?

Mathematical formulation. Minimize the functional
F(S) = [ Ix=SCIP dut)
]Rn
among all maps S that transport . onto v: for any Borel function ¥ : R” — R

/ () duly / H(S(x)) dpu(x)
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Monge optimal transport problem

We want to transport 1 onto v (probability measures) in an optimal way given
that the cost of moving x onto y = S(x) is

x = yI? = Ix = S(x)P?

Mathematical formulation. Minimize the functional
F(S) = [ Ix=SCIP dut)
Rl‘l
among all maps S that transport . onto v: for any Borel function ¥ : R” — R

| otmran) = [ u(se) dutx)

Theorem (Brenier, 1991)

If p(x) = f(x) dx and v(y) have finite second moments then there exists a u-a.e.
unique optimal transport map T.
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Monge optimal transport problem

We want to transport 1 onto v (probability measures) in an optimal way given
that the cost of moving x onto y = S(x) is

x = yI? = Ix = S(x)P?

Mathematical formulation. Minimize the functional
F(S) = [ Ix=SCIP dut)
Rl‘l
among all maps S that transport . onto v: for any Borel function ¥ : R” — R

| otmran) = [ u(se) dutx)

Theorem (Brenier, 1991)

If p(x) = f(x) dx and v(y) have finite second moments then there exists a u-a.e.
unique optimal transport map T.

Moreover, there exists a |.s.c. convex function p, differentiable p-a.e. such that

T =V [-a.e.
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Optimal transport and Monge—Ampeére equation

Suppose p = f(x) dx and v = g(y) dy
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Optimal transport and Monge—Ampeére equation

Suppose p = f(x) dx and v = g(y) dy

If the optimal transport map T is a diffeomorphism then, by changing variables,

| o de= [ vt dy = [ o(Te0e(T(0)] der VT (o) d
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Optimal transport and Monge—Ampeére equation

Suppose p = f(x) dx and v = g(y) dy

If the optimal transport map T is a diffeomorphism then, by changing variables,

| o de= [ vt dy = [ o(Te0e(T(0)] der VT (o) d

Since v was arbitrary,
g(T(x))|det VT (x)| = f(x)
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Optimal transport and Monge—Ampeére equation

Suppose p = f(x) dx and v = g(y) dy

If the optimal transport map T is a diffeomorphism then, by changing variables,

[ wTerde= [ vie)dy = [ o(T0E(T()]deevV T (0]
]Rn Rn ]Rn
Since v was arbitrary,
g(T(x))[det VT (x)| = f(x)
Recall from Brenier that T = V¢ for ¢ convex, so that VT = D?p > 0 and

f
goVyp

det(D?p) =
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Optimal transport and Monge—Ampeére equation

Suppose p = f(x) dx and v = g(y) dy

If the optimal transport map T is a diffeomorphism then, by changing variables,

| o de= [ vt dy = [ o(Te0e(T(0)] der VT (o) d

Since v was arbitrary,
g(T(x))|det VT (x)| = f(x)

Recall from Brenier that T = V¢ for ¢ convex, so that VT = D?p > 0 and

f
det(D%p) = ———
D) = 25w,
» The fully nonlinear equation
det(D?*¢) = F

is the Monge—Ampére (MA) equation
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Convex solutions and ellipticity

Let ¢ be a solution to
det(D?p) = F
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Convex solutions and ellipticity

Let ¢ be a solution to
det(D?p) = F

Equation for a directional derivative J.¢ of the solution

trace (det(D?p)(D?*p) ' D?*(0ep)) = O.F
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Convex solutions and ellipticity

Let ¢ be a solution to
det(D?p) = F

Equation for a directional derivative J.¢ of the solution
trace (det(D?p)(D?*p) ' D?*(0ep)) = O.F

Here A,(x) = det(D%p(x))(D?p(x))~! is the matrix of cofactors of D%p
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Convex solutions and ellipticity

Let ¢ be a solution to
det(D?p) = F

Equation for a directional derivative J.¢ of the solution
trace (det(D?p)(D?*p) ' D?*(0ep)) = O.F

Here A,(x) = det(D%p(x))(D?p(x))~! is the matrix of cofactors of D%p

If we call
u=0ep G = 0.F

then u solves the linearized MA equation

L?(u) = trace(A,(x)D?u) = G
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Convex solutions and ellipticity

Let ¢ be a solution to
det(D?p) = F

Equation for a directional derivative J.¢ of the solution
trace (det(D?p)(D?*p) ' D?*(0ep)) = O.F

Here A,(x) = det(D%p(x))(D?p(x))~! is the matrix of cofactors of D%p

If we call
u=0ep G = 0.F

then u solves the linearized MA equation
L?(u) = trace(A,(x)D?u) = G
Linearized MA is an elliptic equation as soon as

D?p(x) > 0 (convex!) and F >0
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Convex solutions and ellipticity

Let ¢ be a solution to
det(D?p) = F

Equation for a directional derivative J.¢ of the solution
trace (det(D?p)(D?*p) ' D?*(0ep)) = O.F

Here A,(x) = det(D%p(x))(D?p(x))~! is the matrix of cofactors of D%p

If we call
U= 0 G =0.F

then u solves the linearized MA equation
L?(u) = trace(A,(x)D?u) = G
Linearized MA is an elliptic equation as soon as
D?p(x) > 0 (convex!) and F >0

» MA equation is degenerate elliptic.
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The MA geometry

There is an intrinsic quasi-metric space associated with MA
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The MA geometry

There is an intrinsic quasi-metric space associated with MA

» Uniformly elliptic. L(u) = trace(A(x)D?u) with A(x) ~ [
P quadratic polynomial, then L(P) ~ 1
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P quadratic polynomial, then L(P) ~ 1
Sublevel sets of P are all the Euclidean balls.
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The MA geometry

There is an intrinsic quasi-metric space associated with MA

» Uniformly elliptic. L(u) = trace(A(x)D?u) with A(x) ~ [
P quadratic polynomial, then L(P) ~ 1
Sublevel sets of P are all the Euclidean balls. Harnack inequality in balls

» Linearized MA. L% (u) = trace(A,(x)D?u) with det(D?p) ~ 1
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The MA geometry

There is an intrinsic quasi-metric space associated with MA

» Uniformly elliptic. L(u) = trace(A(x)D?u) with A(x) ~ [
P quadratic polynomial, then L(P) ~ 1
Sublevel sets of P are all the Euclidean balls. Harnack inequality in balls

» Linearized MA. L% (u) = trace(A,(x)D?u) with det(D?p) ~ 1
¢ linear function, then L¥(¢ — ) = L¥(¢) =~ 1
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The MA geometry

There is an intrinsic quasi-metric space associated with MA
» Uniformly elliptic. L(u) = trace(A(x)D?u) with A(x) ~ [
P quadratic polynomial, then L(P) ~ 1
Sublevel sets of P are all the Euclidean balls. Harnack inequality in balls
» Linearized MA. L% (u) = trace(A,(x)D?u) with det(D?p) ~ 1
£ linear function, then L?(p —¢) = L¥(p) = 1
The functions ¢ — ¢ play the same role of P as above
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The MA geometry

There is an intrinsic quasi-metric space associated with MA

» Uniformly elliptic. L(u) = trace(A(x)D?u) with A(x) ~ [

P quadratic polynomial, then L(P) ~ 1

Sublevel sets of P are all the Euclidean balls. Harnack inequality in balls
» Linearized MA. L% (u) = trace(A,(x)D?u) with det(D?p) ~ 1

¢ linear function, then L?(¢ — ¢) = L?(p) ~ 1

The functions ¢ — ¢ play the same role of P as above

The geometry is given by the sublevel sets of ¢ — £ or sections of ¢

MA quasi-metric.
(X0, x) = (x) — ¢(x0) — V(x0) - (x — x0)

MA sections.
So(x0, R) = {x € R" : 6,(x0,x) < R}
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The MA geometry

There is an intrinsic quasi-metric space associated with MA

» Uniformly elliptic. L(u) = trace(A(x)D?u) with A(x) ~ [

P quadratic polynomial, then L(P) ~ 1

Sublevel sets of P are all the Euclidean balls. Harnack inequality in balls
» Linearized MA. L% (u) = trace(A,(x)D?u) with det(D?p) ~ 1

¢ linear function, then L?(¢ — ¢) = L?(p) ~ 1

The functions ¢ — ¢ play the same role of P as above

The geometry is given by the sublevel sets of ¢ — £ or sections of ¢

MA quasi-metric.

do(x0, x) = p(x) — (%) — V(x0) - (x — x0)
MA sections.
So(x0, R) = {X €R": 6,(x0,x) < R}

> If p(x) = |x|/2 then L¥ = A and S,(xo, R) = B(x0, V2R)
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Harnack inequality for linearized MA

Assumption. The measure i = det(D?y) > 0 satisfies ji.-condition: given
0 < 61 < 1 there exists 0 < > < 1 such that for all sections S and all E C S,

|E| < 6,|S| implies u(E) < 61u(S)
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Harnack inequality for linearized MA

Assumption. The measure p = det(D?¢) > 0 satisfies ji.-condition: given
0 < 61 < 1 there exists 0 < > < 1 such that for all sections S and all E C S,

|E| < 6,|S| implies u(E) < 61u(S)

Theorem (Caffarelli-Gutiérrez, Amer. J. Math 1997)

There exist geometric constants C, K > 1 and 0 < 7 < 1 such that for any section
So = Sy(x0, Ro), every solution to

LYu=0 in50
u>0 in Sg

and every section S,(x, KR) CC Sp, we have

sup u<C inf wu
Se(x,7R) Se(x,TR)
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Harnack inequality for linearized MA

Assumption. The measure p = det(D?¢) > 0 satisfies ji.-condition: given
0 < 61 < 1 there exists 0 < > < 1 such that for all sections S and all E C S,

|E| < 6,|S| implies u(E) < 61u(S)

Theorem (Caffarelli-Gutiérrez, Amer. J. Math 1997)

There exist geometric constants C, K > 1 and 0 < 7 < 1 such that for any section
So = Sy(x0, Ro), every solution to

LYu=0 in50
u>0 in Sg

and every section S,(x, KR) CC Sp, we have

sup u<C inf wu
Se(x,7R) Se(x,TR)

In particular, there exists 0 < a < 1 such that if LYu = 0 then
lu(x) — u(z)] < Co,(x,z)* forany z € S,(x,R)
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Fractional linearized MA equation

» Maldonado—Stinga, Harnack inequality for the fractional nonlocal linearized
Monge—Ampeére equation, Calc. Var. PDE (2017)
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The fractional linearized MA operator

For ¢ € C3 with D?p > 0 and a section S of ¢ we consider

L?u = —trace(Ay(x)D?u) inS
u=0 on 95

Dirichlet linearized MA operator. The operator is nonvariational.
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The fractional linearized MA operator

For ¢ € C3 with D?p > 0 and a section S of ¢ we consider
L?u = —trace(Ay(x)D?u) inS
u=0 on 0S5

Dirichlet linearized MA operator. The operator is nonvariational.
We want to define (L¥)® for 0 < s < 1.
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The fractional linearized MA operator

For ¢ € C3 with D?p > 0 and a section S of ¢ we consider
L?u = —trace(Ay(x)D?u) inS
u=0 on 0S5

Dirichlet linearized MA operator. The operator is nonvariational.
We want to define (L¥)® for 0 < s < 1.

We define fractional powers L° with the method of semigroups

Let v(x,t) = et u(x) be the heat semigroup generated by L:

Oiv = —Lv fort >0
v(x,0) = u(x)
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The fractional linearized MA operator

For ¢ € C3 with D?¢ > 0 and a section S of ¢ we consider
L?u = —trace(Ay(x)D?u) inS
u=0 on 0S5

Dirichlet linearized MA operator. The operator is nonvariational.
We want to define (L¥)® for 0 < s < 1.

We define fractional powers L° with the method of semigroups

Let v(x,t) = et u(x) be the heat semigroup generated by L:

Oiv = —Lv fort >0
v(x,0) = u(x)

For0<s<1,
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Fractional operators

Pul) = gy [ (e 0 - )

This identity comes from a numerical formula with the Gamma function

» For A >0,

1 *® dt
s _ - 1
A r(—s)/o (e ) ti+s
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Fractional operators

Lou(x) = ﬁ /000 (e ™ u(x) — u(x)) d

tl+s
This identity comes from a numerical formula with the Gamma function

» For A >0,

1 [ . dt
s _ - 1
A r(—s)/o (e ) ti+s

For example,

(YU = 5 /om (2 u(x) — u(x)) 15

t1+s
u(x) —u(z
= Cps P.V./ L(z) dz
RN |X _ z|n+ s
» Stinga—Torrea, Extension problem and Harnack's inequality for some fractional
operators, Comm. PDE (2010) (Hilbert spaces — variational)
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fractional linearized MA operator

For nonvariational operators we use the semigroup method from
» Galé—Miana—Stinga, Extension problem and fractional operators: semigroups and
wave equations, J. Evol. Equ. (2013) (Banach spaces — nonvariational)
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The fractional linearized MA operator

For nonvariational operators we use the semigroup method from
» Galé—Miana—Stinga, Extension problem and fractional operators: semigroups and
wave equations, J. Evol. Equ. (2013) (Banach spaces — nonvariational)
For 0 < s < 1 we define the fractional linearlized MA operator as
1 > P dt
L¥)u(x) = e u(x) — u(x)) =—
(L) ul) = gy [ (e w0 - u() 55

where v(x, t) = e ™" u(x) is the solution to

Orv=—L%v  inS x(0,00)
v=0 on 95 x [0, 00)
v(x,0) =u(x) on$S
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The fractional linearized MA operator

For nonvariational operators we use the semigroup method from
» Galé—Miana—Stinga, Extension problem and fractional operators: semigroups and
wave equations, J. Evol. Equ. (2013) (Banach spaces — nonvariational)

For 0 < s < 1 we define the fractional linearlized MA operator as

(LP)u(x) = r(is) /000 (e*tL“’ u(x) — U(X)) dt

tl+s

where v(x, t) = e ™" u(x) is the solution to

Orv=—L%v  inS x(0,00)
v=0 on 95 x [0, 00)
v(x,0) =u(x) on$S

» The semigroup e t” has a heat kernel.

Pablo Radl Stinga (lowa State University)

On nonlocal Monge-Ampére equations

Providence RI, June 21 2018 11 /23



The fractional linearized MA operator

For nonvariational operators we use the semigroup method from
» Galé—Miana—Stinga, Extension problem and fractional operators: semigroups and
wave equations, J. Evol. Equ. (2013) (Banach spaces — nonvariational)

For 0 < s < 1 we define the fractional linearlized MA operator as

W) =gy (w0 =) 7

where v(x, t) = e ™" u(x) is the solution to

Orv=—L%v  inS x(0,00)
v=0 on 95 x [0, 00)
v(x,0) =u(x) on$S

» The semigroup e t” has a heat kernel.

» One can see that

(L) u(x) =P.V. /S(u(x) — u(2))KE(x,z) dz + Bf (x)u(x)
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Harnack inequality

Assumption. The measure i = det(D?y) > 0 satisfies the doubling condition:
there exists C4 > 1 such that for any section S of ¢ we have

1(S) < Cap(3S)
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Harnack inequality

Assumption. The measure p = det(D?¢) > 0 satisfies the doubling condition:

there exists Cy > 1 such that for any section S of ¢ we have
1(S) < Cap(3S)

Theorem (Maldonado—-Stinga, 2017)

There exist geometric constants C, K > 1 and 0 < 7 < 1 such that for any section

So of @, every f € Cy(So), every solution u to

{(L“’)Su =f inSo

u>0 in So

and every section S,(x, KR) CC S,

<C( inf RN fll oo (s, (x
SW?B,ER)U_ <5¢(IQ,TR)U+ W=ters ’KR))>
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Harnack inequality

Assumption. The measure p = det(D?¢) > 0 satisfies the doubling condition:

there exists Cy > 1 such that for any section S of ¢ we have
1(S) < Cap(3S)

Theorem (Maldonado—-Stinga, 2017)

There exist geometric constants C, K > 1 and 0 < 7 < 1 such that for any section

So of @, every f € Cy(So), every solution u to

{(L“’)Su =f inSo

u>0 in So

and every section S,(x, KR) CC S,

<C( inf Re|| £l oo (5,0 (x
SW?B,ER)U_ <5¢(IQ,TR)U+ W=ters ’KR))>

As a consequence, there exists 0 < o < 1 such that if (L¥)°u = f then
lu(x) — u(z)| < Cop(x,2)* forany z € S,(x,R)
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Caffarelli-Silvestre extension problem (2007)

Aim. Describe (—A)* (nonlocal in R") with local PDEs
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Caffarelli-Silvestre extension problem (2007)

Aim. Describe (—A)® (nonlocal in R") with local PDEs

y>0

R’n

u()
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Caffarelli-Silvestre extension problem (2007)

Aim. Describe (—A)® (nonlocal in R") with local PDEs

y>0
AU + 122U, + Uy =0

U(z,y)

(

u()

R’n
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Caffarelli-Silvestre extension problem (2007)

Aim. Describe (—A)® (nonlocal in R") with local PDEs

y>0

AU + 122U, + Uy =0

—_—
U(z,y) —y' Uy (z,y)

(

u()

R’n
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Caffarelli-Silvestre extension problem (2007)

Aim. Describe (—A)® (nonlocal in R") with local PDEs

y>0

AU + 122U, + Uy =0

—_—
U(z,y) —y' Uy (z,y)

=

wz)  — (=A)u(z)

R’n
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Caffarelli-Silvestre extension problem (2007)

Aim. Describe (—A)® (nonlocal in R") with local PDEs

y>0

AU + 122Uy +Uyy =0

—_—
U(z,y) —y' Uy (z,y)

=

wz)  — (4)u(z)

Rn
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Stinga—Torrea (2010) and Galé-Miana—Stinga (2013)

Aim. Describe L® (nonlocal in Q) with local PDEs

y>0

—LU + 352Uy + Uyy =0

U(:c,y) _yl_Qsz(x7y)
( I
u(z) — Liu(x)
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Extension for fractional linearized MA

The extension problem for (L¥)* in nondivergence form reads

trace(Ay(x)D?U) + 227Y*U,, =0 forx€ S,z>0
U=0 forx€9S,z>0
—U| = f(x) forx € S

z=0%

Then
(L¥Y?u=1f ifandonlyif U(x,0)= u(x)
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Extension for fractional linearized MA

The extension problem for (L¥)* in nondivergence form reads

trace(Ay(x)D?U) + 227Y*U,, =0 forx€ S,z>0
U=0 forx€9S,z>0
—U| = f(x) forx € S

z=0%

Then
(L¥Y?u=1f ifandonlyif U(x,0)= u(x)

The extension equation is a linearized MA equation: for U(x, z) = U(x,|z]),

trace(A,(x)D20) + |z[>7Y/* U,, = trace(As(x, z)DZ, U)y=o0

for z # 0, where ®(x, z) = p(x) + (15_25) |z|*/

In addition, 11 = det(D?®) satisfies the doubling condition
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Extension for fractional linearized MA

The extension problem for (L¥)* in nondivergence form reads

trace(Ay(x)D?U) + 227Y*U,, =0 forx€ S,z>0
U=0 forx€9S,z>0
—U| = f(x) forx € S

z=0%

Then
(L¥Y?u=1f ifandonlyif U(x,0)= u(x)

The extension equation is a linearized MA equation: for U(x, z) = U(x,|z]),

trace(A,(x)D20) + |z[>7Y/* U,, = trace(As(x, z)DZ, U)y=o0

for z # 0, where ®(x, z) = p(x) + (15_25) |z|*/

In addition, 11 = det(D?®) satisfies the doubling condition

BUT still there is a degeneracy/singularity of D>® at z = 0!
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Nondivergence meets divergence

The columns of A,(x) = det(D?p(x))(D?p(x))~! are divergence free.
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Nondivergence meets divergence

The columns of A,(x) = det(D?p(x))(D?p(x))~! are divergence free.
Then linearized MA also has divergence structure:

—trace(A,(x)D?u) = — div(A,(x)Vu) = LPu
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Nondivergence meets divergence

The columns of A,(x) = det(D?p(x))(D?p(x))~! are divergence free.
Then linearized MA also has divergence structure:

—trace(A,(x)D?u) = — div(A,(x)Vu) = LPu
With a change of variables z <— y the extension equation becomes variational

trace(A,(x)D?U) + 27 V5U, =0  +—  div(y' A, (x)V,, V) =0
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Nondivergence meets divergence

The columns of A,(x) = det(D?p(x))(D?p(x))~! are divergence free.
Then linearized MA also has divergence structure:

—trace(A,(x)D?u) = — div(A,(x)Vu) = LPu
With a change of variables z <— y the extension equation becomes variational
trace(A,(x)D?U) + 27 V5U, =0  +—  div(y' A, (x)V,, V) =0

The variational side will give us weak Harnack inequality (|{z = 0}| = 0)
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Nondivergence meets divergence

The columns of A,(x) = det(D?p(x))(D?p(x))~! are divergence free.
Then linearized MA also has divergence structure:

— trace(A, (x)D?u) = — div(A,(x)Vu) = LPu
With a change of variables z <— y the extension equation becomes variational
trace(A,(x)D?U) + 27 V5U, =0  +—  div(y' A, (x)V,, V) =0

The variational side will give us weak Harnack inequality (|{z = 0}| = 0)

L? has a sequence of eigenvalues/eigenfunctions (Ak, 1x), so we can define

(L2)u =" Nukthe
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Nondivergence meets divergence

The columns of A,(x) = det(D?p(x))(D?p(x))~! are divergence free.
Then linearized MA also has divergence structure:

— trace(A, (x)D?u) = — div(A,(x)Vu) = LPu
With a change of variables z <— y the extension equation becomes variational
trace(A,(x)D?U) + 27 V5U, =0  +—  div(y' A, (x)V,, V) =0

The variational side will give us weak Harnack inequality (|{z = 0}| = 0)

L? has a sequence of eigenvalues/eigenfunctions (Ak, 1x), so we can define

(L2)u =" Nukthe

Theorem (Maldonado—Stinga, 2017)

(L9) = (£#)°
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Obstacle problem for a fractional MA equation

» Jhaveri—Stinga, The obstacle problem for a fractional Monge—Ampére equation,
arXiv (2017)
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MA is an extremal operator

For u convex and C2 we have

ndet(D?u(x))"/" = inf {A(uo A)(A7'x) : A= AT > 0,det(A) = 1}
= inf { trace(A’D?u(x)) : A= AT > 0,det(A) =1}
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MA is an extremal operator

For u convex and C2 we have

ndet(D?u(x))"/" = inf {A(uo A)(A7'x) : A= AT > 0,det(A) = 1}
= inf { trace(A’D?u(x)) : A= AT > 0,det(A) =1}

Infimum is achieved by A? = det(D?u)'/"(D?u)~*
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MA is an extremal operator

For u convex and C? we have
ndet(D?u(x))"/" = inf {A(uo A)(A7'x) : A= AT > 0,det(A) = 1}
= inf { trace(A’D?u(x)) : A= AT > 0,det(A) =1}
Infimum is achieved by A? = det(D?u)'/"(D?u)~*

MA is degenerate elliptic. Matrices of the form

A= (8 135>

enter in the computation of the infimum.
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MA is an extremal operator

For u convex and C? we have
ndet(D?u(x))"/" = inf {A(uo A)(A7'x) : A= AT > 0,det(A) = 1}
= inf { trace(A’D?u(x)) : A= AT > 0,det(A) =1}
Infimum is achieved by A? = det(D?u)Y/"(D?u)~!

MA is degenerate elliptic. Matrices of the form

A= (8 1(/)5>

enter in the computation of the infimum.

Nevertheless, if u is convex, D2,u < M, (semiconcave) and

then D?u ~ I. Thus A > Al in the computation of the infimum.
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Fractional MA equation

Definition (Caffarelli-Charro, Ann. of PDE 2015)

For1/2 < s <1 and u linear at infinity,

Dsu(x) = inf {—(—A)*(uo A)(A™'x) : A= AT > 0,det(A) = 1}
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Fractional MA equation

Definition (Caffarelli-Charro, Ann. of PDE 2015)

For1/2 < s <1 and u linear at infinity,

Dsu(x) = inf {—(—A)*(uo A)(A™'x) : A= AT > 0,det(A) = 1}

Integro-differential formula:

: Cn,s U(X+Z)+U(X—Z)—2u(x)
D = f 2 d
su(x) A>0,(I12t(A):1 2 / |A—1z|nt2s z
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Fractional MA equation

Definition (Caffarelli-Charro, Ann. of PDE 2015)

For1/2 < s <1 and u linear at infinity,

Dsu(x) = inf {—(—A)*(uo A)(A™'x) : A= AT > 0,det(A) = 1}

Integro-differential formula:

: Cn,s U(X+Z)+U(X—Z)—2u(x)
D = f 2 d
su(x) A>0,(I12t(A):1 2 / |A—1z|nt2s z

The fractional MA operator is degenerate elliptic.
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Fractional MA equation

Definition (Caffarelli-Charro, Ann. of PDE 2015)

For1/2 < s <1 and u linear at infinity,

Dsu(x) = inf {—(—A)*(uo A)(A™'x) : A= AT > 0,det(A) = 1}

Integro-differential formula:

: Cn,s U(X+Z)+U(X—Z)—2u(x)
D = f 2 d
su(x) A>0,(I12t(A):1 2 / |A—1z|nt2s z

The fractional MA operator is degenerate elliptic.

Theorem (Caffarelli-Charro, Ann. of PDE 2015)

lim Dsu(x) = ndet(D?u(x))"/"

s—1—
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Fractional MA equation

Caffarelli and Charro considered the Dirichlet problem
Dsi=0—¢ in R”
Iim|X|_>oo(E - d))(X) =0

where ¢ is convex and behaves like a cone at infinity.
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Fractional MA equation

Caffarelli and Charro considered the Dirichlet problem
Dsai=u—¢ in R”
{“m|x|—>oo(l7 —¢)(x) =0
where ¢ is convex and behaves like a cone at infinity.
In particular, Ds¢ > 0 = ¢ — ¢, so ¢ is a subsolution and & > ¢.
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Fractional MA equation

Caffarelli and Charro considered the Dirichlet problem
Dsai=u—¢ in R”
limy oo (7 — @) (x) =0

where ¢ is convex and behaves like a cone at infinity.

In particular, Ds¢ > 0 = ¢ — ¢, so ¢ is a subsolution and & > ¢.
There exists a unique viscosity solution & that is Lipschitz and semiconcave.
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Fractional MA equation

Caffarelli and Charro considered the Dirichlet problem
Dsi=0—¢ in R”
limy oo (7 — @) (x) =0
where ¢ is convex and behaves like a cone at infinity.
In particular, Ds¢ > 0 = ¢ — ¢, so ¢ is a subsolution and & > ¢.
There exists a unique viscosity solution & that is Lipschitz and semiconcave.

Moreover, i has the crucial property

g>¢ inR"
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Fractional MA equation

Caffarelli and Charro considered the Dirichlet problem
Dsi=0—¢ in R”
{lim|x|~>oo(a —¢)(x) =0
where ¢ is convex and behaves like a cone at infinity.
In particular, Ds¢p > 0 = ¢ — ¢, so ¢ is a subsolution and i > ¢.
There exists a unique viscosity solution & that is Lipschitz and semiconcave.

Moreover, i has the crucial property

i>¢ inR"

Theorem (Caffarelli-Charro, Ann. of PDE 2015)

Let u be Lipschitz, semiconcave and such that Dsu > 19 > 0 in a ball B.

Pablo Radl Stinga (lowa State University) On nonlocal Monge-Ampére equations Providence RI, June 21 2018



Fractional MA equation

Caffarelli and Charro considered the Dirichlet problem
Dsi=0—¢ in R”
{lim|x|~>oo(a —¢)(x) =0
where ¢ is convex and behaves like a cone at infinity.
In particular, Ds¢p > 0 = ¢ — ¢, so ¢ is a subsolution and i > ¢.
There exists a unique viscosity solution & that is Lipschitz and semiconcave.

Moreover, i has the crucial property

i>¢ inR"

Theorem (Caffarelli-Charro, Ann. of PDE 2015)

Let u be Lipschitz, semiconcave and such that Dsu > 19 > 0 in a ball B.
Then the equation becomes uniformly elliptic: there exists A > 0 such that

. G u(x+ z) + u(x — z) — 2u(x)
D =D = f / d
su(x) = u(x) A>)\I,Idr:et(A):1 2 Jgn |A=1z|nt2s ‘
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Fractional MA equation

Caffarelli and Charro considered the Dirichlet problem
Dsi=0—¢ in R”
{lim|x|~>oo(a —¢)(x) =0
where ¢ is convex and behaves like a cone at infinity.
In particular, Ds¢p > 0 = ¢ — ¢, so ¢ is a subsolution and i > ¢.
There exists a unique viscosity solution & that is Lipschitz and semiconcave.

Moreover, i has the crucial property

i>¢ inR"

Theorem (Caffarelli-Charro, Ann. of PDE 2015)

Let u be Lipschitz, semiconcave and such that Dsu > 19 > 0 in a ball B.
Then the equation becomes uniformly elliptic: there exists A > 0 such that

. G u(x+ z) + u(x — z) — 2u(x)
D =D = f / d
su(x) = u(x) A>)\I,Idr:et(A):1 2 Jgn |A=1z|n+2s ‘

» The uniformly elliptic regularity theory of Caffarelli-Silvestre applies.
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Obstacle problem for fractional MA equation

We consider the obstacle problem

Dsu>u—¢ in R”
u<ap in R”
Dsu=u—¢ in {u<y}

Iim|X|Hoo(u - (b)(X) =0
for an obstacle 1 such that

¥ >¢ and 1 < T insome compact set.
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Obstacle problem for fractional MA equation

We consider the obstacle problem

Dsu>u—¢ in R”
u<ap in R”
Dsu=u—¢ in {u <9}

|im|X|Hoo(u - (b)(X) =0
for an obstacle 7 such that

¥ >¢ and 1 < T insome compact set.

Theorem (Jhaveri-Stinga, 2017)

There exists a unique viscosity solution u that is Lipschitz and semiconcave with
constants depending only on ¢ and . Moreover

u>¢ inR"

Higher regularity of u and regularity of the free boundary 0{u < v}.
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Obstacle problem for fractional MA equation

We consider the obstacle problem

Dsu>u—¢ in R”
u<ap in R”
Dsu=u—¢ in {u <9}

|im|X|Hoo(u - (b)(X) =0
for an obstacle 7 such that

¥ >¢ and 1 < T insome compact set.

Theorem (Jhaveri-Stinga, 2017)

There exists a unique viscosity solution u that is Lipschitz and semiconcave with

constants depending only on ¢ and . Moreover

u>¢ inR"

Higher regularity of u and regularity of the free boundary 0{u < v}.

In particular, locally, the operator becomes uniformly elliptic.
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Existence and regularity

» Existence. Very delicate due to degeneracy
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Existence and regularity

» Existence. Very delicate due to degeneracy

» Regularity. Given any ball B, there exists A > 0 such that

Ddu>u—¢ in R”
u<y in R”
Diu=u—¢ in{u<y}nB

lim|x| o0 (u = @) (x) =0
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Existence and regularity

» Existence. Very delicate due to degeneracy

» Regularity. Given any ball B, there exists A > 0 such that

Ddu>u—¢ in R”
u<y in R”
Diu=u—¢ in{u<y}nB

lim|x| o0 (u = @) (x) =0

This is a uniformly elliptic obstacle problem as considered in

» Caffarelli-Ros-Oton—Serra, Obstacle problems for integro-differential operators:
regularity of solutions and free boundaries, Invent. Math. (2017).
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Existence and regularity

» Existence. Very delicate due to degeneracy

» Regularity. Given any ball B, there exists A > 0 such that

Ddu>u—¢ in R”
u<ap in R”
Diu=u—¢ in{u<y}nB

lim|)—oo(t — @)(x) =0

This is a uniformly elliptic obstacle problem as considered in

» Caffarelli-Ros-Oton—Serra, Obstacle problems for integro-differential operators:
regularity of solutions and free boundaries, Invent. Math. (2017).

We have no equation in the part of {u < ¢} that is outside of B.
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Existence and regularity

» Existence. Very delicate due to degeneracy

» Regularity. Given any ball B, there exists A > 0 such that

Ddu>u—¢ in R”
u<ap in R”
Diu=u—¢ in{u<y}nB

lim|)—oo(t — @)(x) =0

This is a uniformly elliptic obstacle problem as considered in

» Caffarelli-Ros-Oton—Serra, Obstacle problems for integro-differential operators:
regularity of solutions and free boundaries, Invent. Math. (2017).

We have no equation in the part of {u < ¢} that is outside of B.

Careful. Nonlocal information may have local effects: Dipierro-Savin—Valdinoci,
All functions are locally s-harmonic up to a small error, JEMS (2017).
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Existence and regularity

» Existence. Very delicate due to degeneracy

» Regularity. Given any ball B, there exists A > 0 such that

Ddu>u—¢ in R”
u<ap in R”
Diu=u—¢ in{u<y}nB

lim|)—oo(t — @)(x) =0

This is a uniformly elliptic obstacle problem as considered in

» Caffarelli-Ros-Oton—Serra, Obstacle problems for integro-differential operators:
regularity of solutions and free boundaries, Invent. Math. (2017).

We have no equation in the part of {u < ¢} that is outside of B.

Careful. Nonlocal information may have local effects: Dipierro-Savin—Valdinoci,
All functions are locally s-harmonic up to a small error, JEMS (2017).

We are good. The global control ||Vul[ e ®n < 1 permits us to obtain the
same blow ups near free boundary points as in Caffarelli-Ros-Oton—Serra.
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Thank you for your attention!
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